Mixed Integer NonLinear Programs featuring "On/Off" constraints: convex analysis and applications

نویسندگان

  • Hassan L. Hijazi
  • Pierre Bonami
  • Gérard Cornuéjols
  • Adam Ouorou
چکیده

We call ”on/off” constraint an algebraic constraint that is activated if and only if a corresponding boolean variable is turned ”on” or equal to 1. Our main subject of interest is to derive tight convex formulations of Mixed Integer NonLinear Programs (MINLPs) featuring ”on/off” constraints. We study the simple set defined by one ”on/off” constraint with bounded variables. Using disjunctive programming, we introduce convex hull formulations of this set defined in higher dimensional spaces. Because the large number of variables in these formulations appears to be practically disadvantageous, we concentrate our efforts on defining explicit projections into lower spaces. When the functions defining the ”on/off” constraint are order preserving or isotone, we show that the convex hull can be formulated in the space of original variables. This result applies in particular when the functions are additively separable, sum of one variable monotone functions. As a direct application to our results, we present new formulations to a well-known telecommunication problem: routing several commodities subject to multiple delay constraints. While classical multi-commodity routing problems deal with only one design specification, usually a total queuing delay constraint, this model takes into account individual delays for each type of commodity, allowing operators to offer a so-called ”differentiated quality of service”. Numerical results on randomly generated and real world networks are presented to assess the efficiency of the new models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perspective Relaxation of Minlps with Indicator Variables

We study mixed integer nonlinear programs (MINLP) that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is “turned off”, forces some of the decision variables to assume a fixed value, and, when it is “turned on”, forces them to belong to a convex set. Most of the integer variables in known...

متن کامل

Mixed-integer nonlinear programs featuring "on/off" constraints

In this paper, we study MINLPs featuring “on/off” constraints. An “on/off” constraint is a constraint f(x) ≤ 0 that is activated whenever a corresponding 0-1 variable is equal to 1. Our main result is an explicit characterization of the convex hull of the feasible region when the MINLP consists of simple bounds on the variables and one “on/off” constraint defined by an isotone function f . When...

متن کامل

Perspective reformulations of mixed integer nonlinear programs with indicator variables

We study mixed integer nonlinear programs (MINLP)s that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is “turned off”, forces some of the decision variables to assume fixed values, and, when it is “turned on”, forces them to belong to a convex set. Many practical MINLPs contain integer ...

متن کامل

Algorithms and Software for Convex Mixed Integer Nonlinear Programs

This paper provides a survey of recent progress and software for solving convex mixed integer nonlinear programs (MINLP)s, where the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in recent years. By exploiting analogies to well-known techniques for solving ...

متن کامل

Non-convex mixed-integer nonlinear programming: A survey

A wide range of problems arising in practical applications can be formulated as Mixed-Integer Nonlinear Programs (MINLPs). For the case in which the objective and constraint functions are convex, some quite effective exact and heuristic algorithms are available. When nonconvexities are present, however, things become much more difficult, since then even the continuous relaxation is a global opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2010